ECON 159a Solution Set 2

Keith Wannamaker keith@wannamaker.org

December 9, 2009

1 Penalty Shots Revisited

1.1 (a)

Neither player has a pure dominant strategy. For s_1 , M does better than L for l, yet L does better than M for r; R does better than R for r; R does better than R for R for R for R similar argument can be made for R.

1.2 (b)

 $s_2(m)$ is a best response (BR) for $s_1(M)$. However, $s_1(M)$ is not a BR for any belief about $s_2(l)$'s BR is R; m's better responses are L or R; r's BR is L).

1.3 (c)

No. Since $s_1(M)$ is not a BR to $s_2(m)$, s_1 will choose L or R. However, m is not a BR for L or R, thus s_2 should never play m.

1.4 (d)

A Nash equilibrium exists when there is a set of strategies with the property that no player benefits by changing strategies while other players keep their strategies unchanged. There is no such set:

Strategy	s_1 better response	s_2 better response	
s(L,l)	R	-	
s(L,m)	-	l	
s(L,r)	-	l	
s(M, l)	R	m	
s(M,m)	L or R	-	
s(M,r)	L	m	
s(R,l)	-	r	
s(R,m)	-	r	
s(R,r)	L	-	

$\mathbf{2}$ Partnerships Revisited

2.1 (a)

We repeat the process of differentiating u_i , given the partners do the same amount of work, s, but first summing both u_1 and u_2 to determine the total revenue:

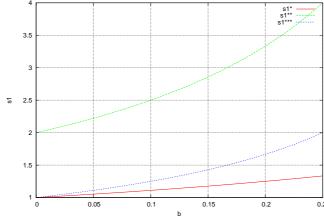
$$\begin{array}{rcl} u_{1+2}(s_1,s_2) & = & [4(s_1+s_2+bs_1s_2)] - s_1^2 - s_2^2 \\ f(s) & = & 4(s+s+bs^2) - s^2 - s^2 \\ f'(s) & = & 8 + 8bs - 4s \\ s^{**} & = & \frac{2}{1-2b} \end{array}$$

 s^{**} is between 2 to 3 times the rationalizable effort $\frac{1}{1-b}$ (with $0 \le b \le 1/4$). The midpoint of the effort range $s_i(2)$ provides the maximum shareable profit and minimum effort cost. Examining the extremes of s_1 and s_2 shows that $s_i(4)$ is no better than $s_i(0)$.

s_1	s_2	b	u_1	u_2
0	0	any	0	0
4	0	any	-8	8
0	4	any	8	-8
4	4	0	0	0
4	4	1/4	8	8

2.2 (b)

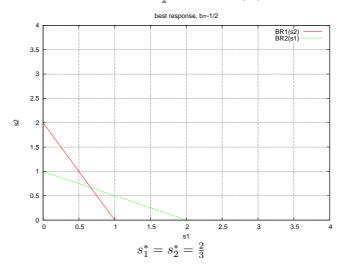
$$\begin{array}{rcl} s_2 & = & \frac{2}{1-2b} \\ BR_1(s_2) & = & 1+bs_2 \\ & = & 1+b\frac{2}{1-2b} \\ s_1^{***} & = & \frac{1}{1-2b} \end{array}$$



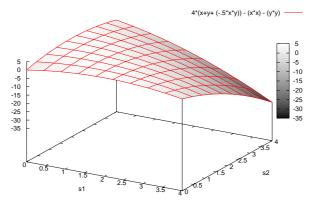
Player 1 will work half as diligently as player 2, if player 1 knows $s_2 = s^{**}$. The effort cost outweighs the benefit of working more.

2.3 (c)

$$\begin{array}{rclcrcl} s_1 & = & 1 - \frac{s_2}{2} & = & BR_1(s_2) \\ s_2 & = & 1 - \frac{s_1}{2} & = & BR_2(s_1) \end{array}$$



Revenue Net of Total Effort, b=-1/2



If the players contracted to provide the same amount of work, they would both work

$$s^{**} = \frac{2}{1-2b}, b = -\frac{1}{2}$$

 $s^{**} = 1$

b	Nash equilibrium (s^*)	"Equal contract" (s^{**})	$u_i(s^*)$	$u_i(s^{**})$
$\frac{1}{4}$	$\frac{4}{3}$	4	<u>40</u> 9	8
$-\frac{1}{2}$	$\frac{2}{3}$	1	$\frac{16}{9}$	2

3 Nash Equilibria and Iterative Deletion

3.1 (a)

B and C are strictly dominated, leaving T, B, L, and R.

3.2 (b)

NE are (M,L) and (T,R).

3.3 (c)

Strictly dominated strategies are never a best response to anything; by definition, Nash equilibrium are a best response to something, so iteratively deleting strictly dominated strategies will never eliminate a Nash equilibrium.

4 Splitting the Dollar

4.1 (a)

 $NE(s_1, s_2)$, where $s_1 + s_2 = \$10$, as well as NE(\$10,\$10).

4.2 (b)

NE(\$5.00,\$5.00), NE(\$5.00,\$5.01), NE(\$5.01,\$5.00), NE(\$5.01,\$5.01).

4.3 (c)

For (a) The NE involving strategies without whole-dollar units are eliminated.

For (b) The equilibria become NE(\$5,\$5), NE(\$5,\$6), NE(\$6,\$5), NE(\$6,\$6).